Design and analysis of a high-performance CNFET-based Full Adder
نویسندگان
چکیده
This paper presents a high-speed and high-performance CNFET-based Full Adder cell for low-voltage applications. The proposed Full Adder cell is composed of two separate modules with identical hardware configurations which generate the Sum and Cout signals in a parallel manner. The great advantage of the proposed structure is its very short critical path which is composed of only two CNT pass-transistors. This design also takes advantage of the unique properties of MOSFET-like CNFETs such as the feasibility of adjusting the threshold voltage of a CNFET by adjusting the diameter of its nanotubes to correct the voltage levels as well as to achieve a high performance. Comprehensive experiments are performed in various situations to evaluate the performance of the proposed design. Simulations are carried out using Synopsys HSPICE with 32nm-CMOS and 32nm-CNFET technologies. The simulation results demonstrate the superiority of the proposed design in terms of speed, power consumption, power delay product (PDP) and less susceptibility to process variations, compared to other classical and modern CMOS and CNFET-based Full Adder cells.
منابع مشابه
A Low Power Full Adder Cell based on Carbon Nanotube FET for Arithmetic Units
In this paper, a full adder cell based on majority function using Carbon-Nanotube Field-Effect Transistor (CNFET) technology is presented. CNFETs possess considerable features that lead to their wide usage in digital circuits design. For the design of the cell input capacitors and inverters are used. These kinds of design method cause a high degree of regularity and simplicity. The proposed des...
متن کاملImprecise Minority-Based Full Adder for Approximate Computing Using CNFETs
Nowadays, the portable multimedia electronic devices, which employ signal-processing modules, require power aware structures more than ever. For the applications associating with human senses, approximate arithmetic circuits can be considered to improve performance and power efficiency. On the other hand, scaling has led to some limitations in performance of nanoscale circuits. According...
متن کاملA High-Speed Dual-Bit Parallel Adder based on Carbon Nanotube FET technology for use in arithmetic units
In this paper, a Dual-Bit Parallel Adder (DBPA) based on minority function using Carbon-Nanotube Field-Effect Transistor (CNFET) is proposed. The possibility of having several threshold voltage (Vt) levels by CNFETs leading to wide use of them in designing of digital circuits. The main goal of designing proposed DBPA is to reduce critical path delay in adder circuits. The proposed design positi...
متن کاملTwo novel low-power and high-speed dynamic carbon nanotube full-adder cells
In this paper, two novel low-power and high-speed carbon nanotube full-adder cells in dynamic logic style are presented. Carbon nanotube field-effect transistors (CNFETs) are efficient in designing a high performance circuit. To design our full-adder cells, CNFETs with three different threshold voltages (low threshold, normal threshold, and high threshold) are used. First design generates SUM a...
متن کاملSymmetrical, Low-Power, and High-Speed 1-Bit Full Adder Cells Using 32nm Carbon Nanotube Field-effect Transistors Technology (TECHNICAL NOTE)
Carbon nanotube field-effect transistors (CNFETs) are a promising candidate to replace conventional metal oxide field-effect transistors (MOSFETs) in the time to come. They have considerable characteristics such as low power consumption and high switching speed. Full adder cell is the main part of the most digital systems as it is building block of subtracter, multiplier, compressor, and other ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011